英语课堂教学破冰游戏谁知道一些基督教青少年

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  基督教青少年团契时做的破冰游戏有快手快脚、油头粉脸、真假难分、瞎子摸象、你争我夺和哭笑难分等。

  c、游戏开始,大家顺序用一只筷子拨出一堆面粉,如果没有糖,便轮到下一位。若有糖在面粉里,那组员便要吃糖,不可用任何方法协助,只可用口吃。

  b 、先用一段时间,小组分享后选出一人讲述一件真人真事,其余两位则分享虚构的经历。

  c、各小组回到大组内。让每小组的3人轮流分享,在限定时间内,其他人可发问,组员只回答“是”与“不是”,时间一到便要猜猜谁真谁假。

  备注:如果时间不足,抽签选出一组分享。 变化:在全组中抽出3人,选出其中一件事实分享。回到大组中,3人同时分享同一件事,大家可发问,3人只可答“是”与“不是”,但讲实线、瞎子摸象

  材料:每组一支笔及一张纸、一个大袋,内有10件小的物件,例如苹果、气球、橡皮、领带、万字夹等等。

  c、每组同时各派一位组员出来,闭上眼睛用右手触摸袋内物件,不得把物件取出,可跑回去把物件名称写在纸上。

  d、其中一方组员摸完每件物品时,或指定时间够了,就倒出袋内物件验证,认出最多件又正确为赢。

  c、在两队中间位置放一物件,组长负责发号司令,当他说“一号”,那两队的一号也要走到中间抢那东西。在限时内拿得最多次的那对,就算赢。

  内容:组长先说一件开心或悲伤的事,例如“你中了六合彩”或“你阿姨昨晚死了”之后,所以组员要作回应,而组员只能以“笑”或“哭”的表情来回应。之后,组长可以找些较中性的事件,如:“你父亲把楼宇卖了”或“你考入了中文大学”。看组员们的回应及挑选个别组员作哭或笑的解释。

  b、大家围圈坐,A指着B身体其中一处,口中却说出其他器官的名字及用途。例如,用手指着他的眼睛,口中却说:“用耳朵听。”

  c、B又要指着C组员的耳朵,但又说出另外一个器官名称。例如,幼儿园中班英语游戏指着耳朵说”用口讲“。

  操作程序:初级版:1、培训师把投影仪(活动挂图)打开,看到一个图形(九个点分布在三行,每行三个点,排成一个正方块状),请他们照原样把这九个点画在纸上。2、要求他们用四条直线一笔将这九个点连起来,线与线之间不能断开(笔不得离开纸面,一笔画形式:人数不限,特别适合大型的演讲和公开课类型:解决问题/破冰游戏/课程导入时间:5-10分钟材料及场地:投影仪或者白板、活动挂图场地:室内游戏目的:了解我们在思考时候是怎样受到束缚的;懂得“任何问题不是不可能解决,只是暂时没有找到法”。操作程序:初级版:1、培训师把投影仪(活动挂图)打开,看到一个图形(九个点分布在三行,每行三个点,排成一个正方块状),请他们照原样把这九个点画在纸上。2、要求他们用四条直线一笔将这九个点连起来,线与线之间不能断开(笔不得离开纸面,一笔画好,不要描),给他们2分钟的时间,让他们试着独立画一下,不要和其他人商量(有些学员可能在以前做过,培训师请他们不要告诉其他学员)。3、时间到,培训师可以询问有多少人成功做出了这道题,并请1位以上的学员上台,到白板上画出正确答案,如果没有人做出来,培训师可以用幻灯片给出正确答案,并引导学员开始讨论。升级版:如果大多数人都能做出初级版的答案或时间允许的线条直线将同样这九个点一笔连起来。完成以后,最后问:如何用一条直线将这九点一笔连起来。(每次提出问题以后,都请1位以上的学员上台来画出自己的答案,培训师根据情况进行讲解)相关讨论:1、少儿英语培训简介这九个点组成的图形在我们头脑中留下的印象是什么?可能答案:我们会在头脑中画一个正方型,四条线围成一个方框,中间的那个点却连不上……2、解这道题的关键是什么?可能答案/引导方向:跳出我们自己或他人为我们画的框框。3、这个游戏对本次培训以及我们的生活和企业有什么启示?可能答案/讲师归纳:只有我们心态归零,抱着学习的心态,全情投入才能在培训中有所收获。现实生活中所有的发明创造也许都是建立在打破前人所认定的“框框”的思维定势基础上。所有的事情都是可能的,只是我们暂时还没有找到方法而已。假使“不可能”已成为一个企业的口头禅,大家都习惯说这也不可能,那也不可能,在这样的“文化”氛围里,也许就注定该企业在竞争的大潮中难有辉煌,并最终被那些不说“不可能”,只专注找方法的企业所淘汰。游戏答案:第一步:要突破框框。首先从左上角的第一个点开始,连接第一排的三个点,这条线一直向右延伸突破了这三个点,然后往左下方画一条直线,通过第二排右边的点和第三排中间的点继续向下,接着向上连接第一行的三个点到达左上角的点,最后向右下角的方向同时穿过第二排中间的点和第三排右边的点完成。第二步:答案也十分简单,用一条“Z”字线即可一笔连成。我们要打破两个“框框”。框框之一:两条平行线永不相交。可爱因斯坦《相对论》告诉我们,两条平行线无限延长,会在无限远的地方相交一点;框框之二:点没有大小。其实,现实中任何一点都会有大小。突破这一限制,只要无限延长“Z”字三段线,九点必可一笔连。第三步:只要再次突破数学上“线没粗细”的框框,用一条很粗的线将九点全部包含其中即可。